Commercial Water Meter Sizing Form Review Process to be used in conjunction with the International Plumbing Code

Commercial is defined as all construction considered commercial and industrial development, which includes all residential housing equal to or over 3 living units with one common meter and/or any separate irrigation meter. Colorado Springs Utilities will reserve the right to request a Commercial Water Meter Sizing form when a facility type or water use is in question and will be required to be submitted before a Service Agreement can be paid.

Commercial Water Meter Sizing Review Process

Colorado Springs Utilities accepts two alternate methods for sizing water meters as described in the International Plumbing Code (IPC).
 (Adopted by the City of Colorado Springs)

Alternate method 1

1. The Property Owner (or his assigned representative) shall be responsible for the accuracy of all data calculated and sent to Colorado Springs Utilities for review.
2. The International Plumbing Code, Section 105.4, An alternate engineered design for water meters may be submitted to Customer Contract Administration, Suite 210 (second floor), (719) 668-8111 at the Pikes Peak Regional Building Development Center, for consideration.

A registered design professional can submit sufficient technical data to substantiate an alternate design for water meter sizing. This data shall include, but not limited to, construction documents and calculations, to support the proposed alternate design of the water meter, for review and approval by Colorado Springs Utilities. If a diversity factor is used in calculating the meter and service line size, then the engineer shall submit documentation justifying the diversity factor criteria.
3. Customer Contract Administration will notify Customer Operation (Field Services) to pick-up the construction documents and calculations for the proposed water meter.

Depending on the submittal, Field Services shall review the proposed water meter sizing documents in conjunction with the current approved version of the International Plumbing Code, Appendix E for sizing criteria. Field Services will coordinate any comments/revisions with the registered design professional. Submittal will be reviewed within 10 business days. If the alternative engineered design is not approved, a Field Service representative shall notify the designer and request that the alternate method 2 be used. Questions regarding the status of the submittal, call 719-668-7279.

Note: The water meter shall not be released until the water meter sizing form has been reviewed and approved by Colorado Springs Utilities and development fees paid. The customer (s) may not pay development fees prior to approval of the water meter form.
4. Once approved, Field Services will return the water meter documentation to Customer Contract Administration for entry into the eB database.
5. Customer Contract Administration will check the water meter size from the eB database to create a service contract with the appropriate Water Development Charges. (Utilities Rules and Regulations)

Alternate method 2

1. The Property Owner (or his assigned representative) shall be responsible for the accuracy of all data calculated and sent to Colorado Springs Utilities for review.
2. The Developer works with the Architect/Mechanical engineer to provide the necessary documentation for water meter sizing. (One form per building structure)
3. The Developer submits the water meter sizing form (s) per IPC Appendix E, along with one set of drawings of the proposed Mechanical/Irrigation plan showing the water fixtures and piping to Customer Contract Administration, Suite 210 (second floor), (719) 6688111 at the Pikes Peak Regional Building Development Center.
4. Customer Contract Administration will notify Customer Operation (Field Services) to pick-up the mechanical/irrigation plans and water meter sizing form(s).
5. Field Services shall review the proposed water meter sizing documents in conjunction with the current approved version of the International Plumbing Code for sizing criteria. [Figure E301.3 (1) and Table E201.1], and applicable Colorado Springs Utilities meter configurations. Field Services will coordinate any comments/revisions with the Developer. Submittal will all be reviewed within 10 business days. Questions regarding the status of the form, call 719-668-7279.

Once approved, Field Services will return the water meter sizing form to Customer Contract Administration for entry into the eB database.

Note: The water meter shall not be released until the water meter sizing form has been reviewed and approved by Colorado Springs Utilities and development fees paid. The customer (s) may not pay development fees prior to approval of the water meter form. Colorado Springs Utilities allows the size of the service line and tap (with the exception of an allowed 4" tap and 2" meter), to be one size greater than the meter size, which will be verified by Customer Contract Administration. (Chapter 7, Water LESS)
6. Customer Contract Administration will check the water meter size from the eB database to create a service contract with the appropriate Water Development Charges. (Utilities Rules and Regulations)

Colorado Springs Utilities

It's how we're all connected

Application:

All landowners relevant to this application must be included as applicants of this submittal. By signing this application and attaching a completed Statement of Authority, applicant and property owner attests that they are aware of this application and agree to its content.

The Applicant/Owner shall attach the water meter sizing documentation along with one set of drawings of the proposed water/plumbing mechanical plans for the structure to Customer Contract Administration, Suite 210 (second floor), (719) 668-8111, at the Pikes Peak Regional Development Center.

Sizing water meters shall be based upon the Water Supply Fixture Units or an alternate engineered design, in the current approved version of the International Plumbing Code, approved by the City of Colorado Springs and El Paso County, Pikes Peak Regional Building Department.

Owner/Applicant Name \qquad Phone \# \qquad Print Name
Service Address \qquad (Address issued by PPRBD Enumeration)
Legal Description \qquad Tax ID \# \qquad
Use of Facility \qquad
(Denote Answer)

Is meter installation in a pit or vault or Mechanical room (Inside installation)? \qquad

The undersigned hereby makes application to Colorado Springs Utilities for approval of Water Service Meter Size. Applicant has read and understands the application instructions, and certifies that all information including the attached Statement of Authority herein is true and correct to the best of their knowledge and belief.

STATEMENT OF AUTHORITY FOR

1. This Statement of Authority relates to an entity named:
2. The type of entity is a
\square Corporation
Nonprofit Corporation
Limited Liability Company
General partnership
Limited partnership
Registered limited liability partnership
Business trust
Trust
\qquad

Other \qquad
3. The entity is formed under the laws of \qquad
4. The mailing address for the entity is \qquad
5. The name and position of each person authorized to execute instruments conveying, encumbering, or otherwise affecting title to real property on behalf of the entity is
\qquad
6. (Optional) The authority of the foregoing person(s) to bind the entity isnot limited \square limited as follows: \qquad
7. (Optional) Other matters concerning the manner in which the entity deals with interest in real property: \qquad
8. This Statement of Authority is executed on behalf of the entity pursuant to the provisions of Section 38-30-172, C.R.S.

Executed this \qquad day of \qquad , 20
\qquad .
$B y:$ \qquad

STATE OF COLORADO) ss.
County of El Paso)

The foregoing instrument was acknowledged before me this \qquad day of \qquad , 20__by \qquad as \qquad of
\qquad

Witness my hand and official seal
My Commission Expires: \qquad

Example of basic diagram from the International Plumbing Code (IPC) - Figure E 103.3 (1)
Total development length (AE) = \qquad Feet [IPC, Figure E103.3 (1)]

Static Pressure = Overflow Elevation (Gradient Elevation) ft - Meter Elevation ft / 2.31ft/psi
\qquad

It's how we're all connected

Commercial Irrigation Demand

 WorksheetPlease choose prefered method
\square Actual Demand Method (AD)
Design Criteria Method (DC)*
(AD) Example illustrates a 3-zone system with zones A and B running simultaneously and C independently. To determine peak GPM: zone $A+B$ operating together yields demand of 40 GPM ($30+10$); zone C yields demand of 30 GPM. Meter is sized to largest demand of 40 GPM for system. Appropriate meter size is 1 -inch.

Example (AD)			
$\left.\begin{array}{\|c\|c\|c\|}\hline \text { Zone } & \text { \# Heads } & \begin{array}{c}\text { GPM per } \\ \text { Head }\end{array} \\ \hline \text { Total } & \begin{array}{c}\text { GPM per } \\ \text { Zone }\end{array} \\ \hline \text { A } & 30 & 1\end{array}\right] 30$			
B	20	0.5	10
C	20	1.5	30
Totals	$\mathbf{7 0}$		$\mathbf{7 0}$

Example: Zone A + Zone B + Zone ___ $=\mathbf{3 0}$ GPM + $\mathbf{1 0}$ GPM +__ GPM $=\mathbf{4 0}$ GPM Peak Irrigation System Demand
For AD Method, please provide requested information in table below For DC Method, enter Value for maximum flow rate in box below

Zone	\# Heads	GPM per Head	Total GPM per Zone
A			0
B			0
C			0
D			0
E			0
F			0
G			0
H			0
J			0
K			0

Determine maximum flow rate (GPM) by identifying which zones will be operating together ~or~ enter Design Criteria maximum flow rate (GPM) Zone $\underline{\mathrm{n} / \mathrm{a}}+$ Zone $\underline{\mathrm{n} / \mathrm{a}}+$ Zone $\underline{\mathrm{n} / \mathrm{a}}=\underline{0} \mathrm{GPM}+\underline{0} G P M+\underline{0} G P M=\frac{0}{\text { AD } \square}$ GPM Peak Irrigation Demand

* By selecting the Design Criteria Method (DC) for Irrigation Demand reporting, Applicant/Owner agrees to have empowered the Applicant (if other) to submit the information on their behalf and to the accuracy of the irrigation peak demand value reported herein. The DC peak demand value will be used in lieu of Approved Final Irrigation Plan submittal for the purposes of this form.

Determine minimum flow rate (GPM) by identifying which zones will be operating together.
Zone $^{\mathrm{n} / \mathrm{a}}+$ Zone $^{\mathrm{n} / \mathrm{a}}+$ Zone $^{\mathrm{n} / \mathrm{a}}=0$

I affirm that the information given is accurate and acknowledge that approval of meter size and maximum water capacity is based solely on the information provided above, and such determination is at the sole discretion of Colorado Springs Utilities.

Owner/Agent: \qquad Date: \qquad
Design Engineer: \qquad Date: \qquad

Colorado Springs Utilities

It's how we're all connected

Commercial Water Meter Sizing Form Demand Summary Sheet

Backflow:

Backflow Pressure Loss, based on make and model (BPL) = \qquad psi (Located in manufacturers specification manuals)

Flow:

Domestic Flow (D): A) Normal How Rate $=$	(gpm)
B) Maximum Flow Rate $=$	(gpm)

Total irrigation and domestic:	Normal Flow Rate:	$I(A)+D(A)=\frac{0}{0}$ (gpm)
	Maximum Flow Rate:	$I(B)+D(B)=\quad$ (gpm)

Service Line Size:__ Inch Status: $\quad \square$ Existing $\quad \square$ Proposed
Requested Meter Size to be Installed [IPC, Table E201.1 (50-60 psi)] $=\quad \square$? Inch $\quad \square$

Additional Customer Comments:

The Approval of Water Meter size will be prepared exclusively on the basis of the attached information submitted by the Applicant/Owner. Applicant/Owner hereby agrees to indemnify Colorado Springs Utilities from any and all claims, damages, losses and/or costs arising out of, or related to any mis-information, change or alteration of any information; including but not limited to Additional Water Development Charges pursuant to Utilities Rules and Regulations Section 41.E. Authorized submission to Colorado Springs Utilities of the provided information herein indicates that Applicant/Owner accepts the above conditions.
\qquad Date: \qquad

This sheet for Colorado Springs Utilities Internal use only:

Application received by \qquad Date \qquad

Type and size of meter to be installed by Colorado Springs Utilities
Meter type: Positive Displacement Turbine SingleJet
Size of meter \qquad

Comments:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Field Service approved (per information provided):

By \qquad Date \qquad
Print Name \qquad

Information entered into eB database:
By \qquad Date \qquad

Print Name \qquad
\qquad Premise I.D. \qquad

Customer Contract Administration: (Scanned into eB database)

Meter Sizing Chart for Service lines (meter size with the approval of Customer Operations)

Pipe Size (O.D.) of Service line	Size of Tap (minimum and installation)	Meter Size based on flow requirements (min./max. size)(1)(5)	Maximum Flow rate AWWA - M22
HDPE Pipe (CTS) (2)			
1" HDPE CTS	1" (Sidewall)	3/4" meter	3/4" $=30 \mathrm{GPM}$
1 1/2" HDPE CTS	$11 / 2 "$ (Sidewall)	$3 / 4$ ", 1" meter	$1 "=50 \mathrm{GPM}$
2" HDPE CTS	2" (Sidewall)	1", $11 / 2$ " meter	$11 / 2$ " $=100 \mathrm{GPM}$
Copper Pipe (CTS)			
$3 / 4$ " CTS	3/4" (Тар)	3/4" meter	$3 / 4 "=30 \mathrm{GPM}$
1" CTS	1" (Tap)	$3 / 4$ ", 1" meter	$1 "=50 \mathrm{GPM}$
$11 / 2$ " CTS	$11 / 2$ " (Saddle)	1 ", $11 / 2$ " meter	$11 / 2 "=100 \mathrm{GPM}$
2" CTS	2" (Saddle)	$11 / 2^{\prime \prime}$, 2" meter	2" = 160 GPM
Service line pipe (does not apply to Fire lines) (3)			Flow based on type of meter (Turbo, Compound, etc.)(3)
4"/ 3" (4)	4"	3" meter	=
4"	4"	4" meter	=
6 "	6 "	6" meter	=
8"	8"	8" meter	=

(1) Meter Sizing for Commercial Buildings on Meter Sizing Form and the number of w.s.f.u., engineered by the consultant engineer. Smaller meters installed with the approval of Customer Operations based on maximum flow and length of service line.
(2) $3 / 4$ " HDPE pipe up-sized to 1 " pipe per RBD requirements, HDPE pipe to be engineered by the consultant engineer.
(3) Different meters (turbo, compound, etc.) are required for different applications based on facility use, per Meter Sizing Form and Customer Operations.
(4) Variance: 4" Tee reduced at pit to accommodate a 3" meter, see Water Construction drawings.
(5) Variance: A variance for a larger meter and the design of HDPE pipe, maybe granted, based on design engineer's calculations.

Water Service Sizing Chart for 3/4" and 1" meters

3/4" Water Meter Size
Maximum flow - 30GPM
80\% capacity - 24GPM

Static Pressure at water main/point of Connection PSI

130	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A
$\mathbf{1 2 0}$	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	B
$\mathbf{1 1 0}$	A	A	A	A	A	A	A	A	A	A	A	A	A	B	B	B	B
100	A	A	A	A	A	A	A	A	A	A	A	B	B	B	B	B	B
$\mathbf{9 0}$	A	A	A	A	A	A	A	A	B	B	B	B	B	B	B	B	B
$\mathbf{8 0}$	A	A	A	A	A	A	B	B	B	B	B	B	B	B	B	B	B
70	A	A	A	B	B	B	B	B	B	B	B	B	B	B	B	B	B
<60	A	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B
	$<\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$	$\mathbf{7 0}$	$\mathbf{8 0}$	$\mathbf{9 0}$	$\mathbf{1 0 0}$	$\mathbf{1 1 0}$	$\mathbf{1 2 0}$	$\mathbf{1 3 0}$	$\mathbf{1 4 0}$	$\mathbf{1 5 0}$	$\mathbf{1 6 0}$	$\mathbf{1 7 0}$	$\mathbf{1 8 0}$

Linear feet of type " K " copper service from the water main to the primary meter location

1" Water Meter Size												$\begin{aligned} & \text { Maximum flow- 50GPM } \\ & \text { 80\% capacity - 40GPM } \\ & \hline \end{aligned}$						
Static Pressure at water main/point of Connection PSI	130	B	B	B	B	B	B	B	B	B	B	B	B	B	C	C	C	C
	120	B	B	B	B	B	B	B	B	B	B	B	C	C	C	C	C	C
	110	B	B	B	B	B	B	B	B	B	C	C	C	C	C	C	C	C
	100	B	B	B	B	B	B	B	C	C	C	C	C	C	C	C	C	C
	90	B	B	B	B	B	C	C	C	C	C	C	C	C	C	C	C	C
	80	B	B	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
	70	B	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
	<60	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
		<20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180

Linear feet of type " K " copper service from the water main to the primary meter location

Legend

$A=3 / 4$ " copper/ 1 " HDPE service line, $B=1$ " copper/ $11 / 2 "$ HDPE service line, $C=11 / 2 "$ copper/ $2 "$ HDPE service line

