This required report is prepared in accordance with federal and state regulations of the Safe Drinking Water Act.

Esta información acerca de su agua potable es importante. Si usted no puede leer esto en inglés, por favor pídale a alguien que le traduzca esta importante información o llame a Cuidado al Cliente al número 719-448-4800.
# TABLE OF CONTENTS

3  INTRODUCTION  
4  WATER SOURCES  
5  COLORADO SOURCE WATER ASSESSMENT AND PROTECTION  
6  WATER CONTAMINANTS  
7  IMMUNOCOMPROMISED PERSONS ADVISORY  
8  LEAD IN DRINKING WATER  
8  FLUORIDE IN DRINKING WATER  
9  PFAS AND CRYPTOSPORIDIUM  
10  TERMS, ABBREVIATIONS & SYMBOLS  
11  DATA PRESENTED IN THE WATER QUALITY REPORT  
12-17 DETECTED CONTAMINANTS TABLES  
18-19 UNREGULATED CONTAMINANT MONITORING REGULATION  
20  CUSTOMERS HAVE A VOICE IN DECISIONS  
20  GENERAL INFORMATION
INTRODUCTION

Colorado Springs Utilities proudly serves high quality water to nearly half a million customers every year. Although our source water comes straight from high mountain snowmelt, it takes the hard work and dedication of our employees to ensure that safe and reliable water is provided to you.

Every year, thousands of samples are collected at reservoirs and streams, at water treatment facilities and throughout the distribution system. Those samples are analyzed for numerous water quality parameters to ensure that safe and reliable water is served to our customers. These analyses are not only performed to meet regulatory requirements, but also for research and operational improvements.

We are pleased to share with you the 2019 Water Quality Report. The report is designed to provide you detailed information about your drinking water. If you have any questions about this report or the quality of your water, please do not hesitate to contact us at 719-668-4560.
WATER SOURCES

Your water is blended from multiple sources, including surface water and purchased water. Your water source may vary throughout the year.

MOUNTAIN WATER SOURCES

With no major water source nearby, much of our raw water collection system originates from nearly 200 miles away, near Aspen, Leadville, and Breckenridge. Almost 75 percent of our water originates from mountain streams. Water from these streams is collected and stored in numerous reservoirs along the Continental Divide. Collection systems in this area consist of the Homestake, Fryingpan-Arkansas, Twin Lakes, and Blue River systems.

The majority of this raw water is delivered to our city through pipelines that help protect it from contamination, such as herbicides, pesticides, heavy metals and other chemicals. After the long journey, water is stored locally at Rampart Reservoir and the Catamount reservoirs on Pikes Peak.

LOCAL SURFACE SOURCES

To supplement the water received from the mountain sources, we divert water from local surface water collection systems including:

- North and South Slopes of Pikes Peak – Catamount Reservoirs, Crystal Reservoir, South Slope Reservoirs and tributaries
- North and South Cheyenne Creeks
- Fountain Creek
- Monument Creek – Pikeview Reservoir
- Northfield Watershed – Rampart and Northfield Reservoirs
- Pueblo Reservoir

LOCAL GROUND WATER SOURCES

We previously pumped water from wells drilled into two different aquifers. We have two wells on the Denver aquifer (500-700 feet deep) and two wells on the Arapahoe aquifer (900-1,000 feet deep). These wells were deactivated in July 2015.

PURCHASED WATER SOURCE

Fountain Valley Authority or FVA (PWSID#CO0121300) receives water from the Fryingpan-Arkansas Project – a system of pipes and tunnels that collects water in the Hunter-Fryingpan Wilderness Area near Aspen. Waters collected from this system are diverted to the Arkansas River, near Buena Vista, and then flow about 150 miles downstream to Pueblo Reservoir. From there, the water travels through a pipeline to a water treatment plant before being delivered to Colorado Springs.

WATER TREATMENT

All water sources are treated at one of our six treatment plants prior to entering our drinking water distribution system, an intricate system of tanks, pumps and pipes that ultimately deliver water to your home or business.
The Colorado Department of Public Health and Environment has provided us with a Source Water Assessment Report for our water supply. For general information or to obtain a copy of the report please visit https://www.colorado.gov/cdphe/ccr (located under “Guidance: Source Water Assessment Reports” and searchable using “121150, Colorado Springs Utilities”), or by contacting Laboratory Services at 719-668-4560.

The Source Water Assessment Report provides a screening-level evaluation of potential contamination that could occur. It does not mean that the contamination has occurred or will occur. We can use this information to evaluate the need to improve our current water treatment capabilities and prepare for future contamination threats. This can help us ensure that quality finished water is delivered to your homes. In addition, the source water assessment results provide a starting point for developing a source water protection plan.

Potential sources of contamination to our source water areas may come from:

- EPA Superfund Sites
- EPA Abandoned Contaminated Sites
- EPA Hazardous Waste Generators
- EPA Chemical Inventory/Storage Sites
- EPA Toxic Release Inventory Sites
- Permitted Wastewater Discharge Sites
- Aboveground, Underground and Leaking Storage Tank Sites
- Solid Waste Sites
- Existing/Abandoned Mine Sites
- Concentrated Animal Feeding Operations
- Other Facilities
- Commercial/Industrial Transportation
- High- and Low-Intensity Residential
- Urban Recreational Grasses
- Quarries/Strip Mines/Gravel Pits
- Agricultural Land (row crops, small grain, pasture/hay, orchards/vineyards, fallow and other)
- Forest
- Septic Systems
- Oil/Gas Wells
- Road Miles

The results of the source water assessment are not a reflection of our treated water quality or the water you receive, but rather a rating of the susceptibility of source water contamination under the guidelines of the Colorado Source Water Assessment and Protection (SWAP) program.
The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operation and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- Pesticides and herbicides that may come from a variety of sources, such as agriculture, urban stormwater runoff and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and also may come from gas stations, urban stormwater runoff, and septic systems.
- Radioactive contaminants that can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the Colorado Department of Public Health and Environment prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration regulations establish limits for contaminants in bottled water that must provide the same protection for public health.
Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline (1-800-426-4791) or by visiting http://water.epa.gov/drink/contaminants.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV-AIDS or other immune system disorders, some elderly, and infants can be particularly at risk of infections. These people should seek advice about drinking water from their health care providers.
LEAD IN DRINKING WATER

If present, elevated levels of lead can cause serious health problems (especially for pregnant women and young children). It is possible that lead levels at your home may be higher than other homes in the community as a result of materials used in your home’s plumbing. If you are concerned about lead in your water, you may wish to have your water tested. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. Additional information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/safewater/lead.

FLUORIDE IN DRINKING WATER

Fluoride is a compound found naturally in many places, including soil, food, plants, animals and the human body. It is also found naturally at varying levels in all Colorado Springs’ water sources. Colorado Springs Utilities does not add additional fluoride to your drinking water. Any fluoride in the drinking water comes naturally from our source waters. For more fluoride information click https://www.csu.org/pages/water-quality-r.aspx.
Cryptosporidium is a microbial pathogen found in surface water throughout the United States. Although filtration removes cryptosporidium, the most commonly used filtration methods cannot guarantee 100 percent removal. No cryptosporidia were detected in our source water in 2018. Ingestion of cryptosporidium may cause cryptosporidiosis, an abdominal infection. Symptoms of infection include nausea, diarrhea and abdominal cramps. Most healthy individuals can overcome the disease within a few weeks. However, immunocompromised people are at greater risk of developing the life-threatening illness. We encourage immunocompromised individuals to consult their doctor regarding appropriate precautions to take to avoid infection. Cryptosporidium must be ingested to cause disease, and it may be spread through means other than drinking water. For more information about contaminants and potential health effects, or to receive a copy of the U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by cryptosporidium and microbiological contaminants call the EPA Safe Drinking Water Hotline at 1-800-426-4791.

PFAS are a group of man-made chemicals present in food packaging, commercial household products, drinking water sources and manufacturing facilities. Currently, PFAS are not regulated under the National Primary Drinking Water Regulations. However, the EPA did issue a health advisory for specific perfluorinated compounds (PFOA and PFOS) of 70 parts per trillion (ppt). Colorado Springs Utilities has not detected these compounds at our water treatment facilities above the method reporting limit of 10 ppt, including our most recent voluntary sampling conducted in the 1st quarter 2019. For more information about PFAS click https://www.epa.gov/pfas.

Cryptosporidium is a microbial pathogen found in surface water throughout the United States. Although filtration removes cryptosporidium, the most commonly used filtration methods cannot guarantee 100 percent removal. No cryptosporidia were detected in our source water in 2018.
TERMS, ABBREVIATIONS & SYMBOLS

- **MAXIMUM CONTAMINANT LEVEL (MCL)** – The highest level of a contaminant allowed in drinking water.
- **TREATMENT TECHNIQUE (TT)** – A required process intended to reduce the level of a contaminant in drinking water.
- **HEALTH-BASED** – A violation of either an MCL or TT.
- **NON-HEALTH-BASED** – A violation that is not an MCL or TT.
- **ACTION LEVEL (AL)** – The concentration of a contaminant which, if exceeded, triggers treatment and other regulatory requirements.
- **MAXIMUM RESIDUAL DISINFECTANT LEVEL (MRDL)** – The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- **MAXIMUM CONTAMINANT LEVEL GOAL (MCLG)** – The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- **MAXIMUM RESIDUAL DISINFECTANT LEVEL GOAL (MRDLG)** – The level of a drinking water disinfectant, below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- **VIOLATION (NO ABBREVIATION)** – Failure to meet a Colorado Primary Drinking Water Regulation.
- **FORMAL ENFORCEMENT ACTION (NO ABBREVIATION)** – Escalated action taken by the State (due to the risk to public health, or number or severity of violations) to bring a non-compliant water system back into compliance.
- **VARIANCE AND EXEMPTIONS (V/E)** – Department permission not to meet an MCL or treatment technique under certain conditions.
- **GROSS ALPHA (NO ABBREVIATION)** – Gross alpha particle activity compliance value. It includes radium-226, but excludes radon-222, and uranium.
- **PICOCURIES PER LITER (pCi/L)** – Measure of the radioactivity in water.
- **NEPHELOMETRIC TURBIDITY UNIT (NTU)** – Measure of the clarity or cloudiness of water. Turbidity in excess of 5 NTU is just noticeable to the typical person.
- **COMPLIANCE VALUE (NO ABBREVIATION)** – Single or calculated value used to determine if regulatory contaminant level (e.g., MCL) is met. Examples of calculated values are the 90th Percentile, Running Annual Average (RAA) and Locational Running Annual Average (LRAA).
- **AVERAGE (X-BAR)** – Typical value.
- **RANGE (R)** – Lowest value to the highest value.
- **SAMPLE SIZE (N)** – Number or count of values (i.e., number of water samples collected).
- **PARTS PER MILLION = MILLIGRAMS PER LITER (ppm = mg/L)** – As a reference, one part per million is the equivalent of one minute in two years or a single penny in $10,000.
- **PARTS PER BILLION = MICROGRAMS PER LITER (ppb = ug/L)** – As a reference, one part per billion is the equivalent of one minute in 2,000 years or a single penny in $10,000,000.
- **NOT APPLICABLE (N/A)** – Does not apply or not available.
- **LEVEL 1 ASSESSMENT** – A study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
- **LEVEL 2 ASSESSMENT** – A very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
DATA PRESENTED IN THE WATER QUALITY REPORT

We routinely monitor for contaminants in your drinking water according to federal and state laws. The tables on the following pages show the combined results of our monitoring for six water treatment plants for the period of January 1 through December 31, 2018, unless otherwise noted.

The State of Colorado requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. Therefore, some of our data, though representative, may be more than one year old.

Only detected contaminants sampled within the last five years appear in this report. If no table appears in this section, then no contaminants were detected in the last round of monitoring.
## DETECTED CONTAMINANTS TABLES

**COLORADO SPRINGS UTILITIES (PWSID CO0121150)**

### INORGANIC CONTAMINANTS

**MONITORED AT THE TREATMENT PLANT (ENTRY POINT TO THE DISTRIBUTION SYSTEM)**

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>MCL</th>
<th>MCLG</th>
<th>UNITS</th>
<th>RANGE</th>
<th>AVERAGE</th>
<th>MCL VIOLATION</th>
<th>SAMPLE DATES</th>
<th>POSSIBLE SOURCE(S) OF CONTAMINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barium</td>
<td>2</td>
<td>2</td>
<td>ppm</td>
<td>0.01 – 0.06</td>
<td>0.03</td>
<td>No</td>
<td>Apr 2018</td>
<td>Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits</td>
</tr>
<tr>
<td>Fluoride</td>
<td>4</td>
<td>4</td>
<td>ppm</td>
<td>0.16 – 0.53</td>
<td>0.41</td>
<td>No</td>
<td>Apr 2018</td>
<td>Erosion of natural deposits; discharge from fertilizer and aluminum factories</td>
</tr>
<tr>
<td>Nickel</td>
<td>N/A</td>
<td>N/A</td>
<td>ppb</td>
<td>0 – 0.003</td>
<td>0.001</td>
<td>No</td>
<td>Apr 2018</td>
<td>Erosion of natural deposits; discharge from industries; discharge from refineries and steel mills</td>
</tr>
<tr>
<td>Nitrate (as Nitrogen)</td>
<td>10</td>
<td>10</td>
<td>ppm</td>
<td>0 – 0.44</td>
<td>0.15</td>
<td>No</td>
<td>Apr 2018</td>
<td>Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits</td>
</tr>
<tr>
<td>Selenium</td>
<td>50</td>
<td>50</td>
<td>ppb</td>
<td>0 – 0.006</td>
<td>0.002</td>
<td>No</td>
<td>Apr 2018</td>
<td>Discharge from petroleum and metal refineries; erosion of natural deposits</td>
</tr>
<tr>
<td>Sodium</td>
<td>N/A</td>
<td>N/A</td>
<td>ppm</td>
<td>4.91 – 20.70</td>
<td>10.86</td>
<td>No</td>
<td>Apr 2018</td>
<td>Erosion of natural deposits</td>
</tr>
</tbody>
</table>

### ORGANIC CONTAMINANTS

**MONITORED AT THE TREATMENT PLANT (ENTRY POINT TO THE DISTRIBUTION SYSTEM)**

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>MCL</th>
<th>MCLG</th>
<th>UNITS</th>
<th>AVERAGE</th>
<th>RANGE DETECTED</th>
<th>MCL VIOLATION</th>
<th>SAMPLE DATES</th>
<th>POSSIBLE SOURCE(S) OF CONTAMINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Di(2-ethylhexyl) phthalate</td>
<td>6</td>
<td>0</td>
<td>ppb</td>
<td>2.82</td>
<td>0 – 13</td>
<td>No</td>
<td>Jan, Apr, Jul, Aug, Oct</td>
<td>Discharge from rubber and chemical factories</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>700</td>
<td>700</td>
<td>ppb</td>
<td>0.15</td>
<td>0 – 0.79</td>
<td>No</td>
<td>Jan, Jun, Jul, Oct</td>
<td>Discharge from petroleum refineries</td>
</tr>
<tr>
<td>Xylenes</td>
<td>10,000</td>
<td>10,000</td>
<td>ppb</td>
<td>1.82</td>
<td>0 – 7.9</td>
<td>No</td>
<td>Jan, Jun, Jul, Oct</td>
<td>Discharge from petroleum factories; discharge from chemical factories</td>
</tr>
</tbody>
</table>
### RADIONUCLIDES
MONITORED AT THE TREATMENT PLANT (ENTRY POINT TO THE DISTRIBUTION SYSTEM)

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>MCL</th>
<th>MCLG</th>
<th>UNITS</th>
<th>AVERAGE</th>
<th>RANGE LOW-HIGH</th>
<th>MCL VIOLATION</th>
<th>SAMPLE DATES</th>
<th>POSSIBLE SOURCE(S) OF CONTAMINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined Radium</td>
<td>5</td>
<td>0</td>
<td>pCi/L</td>
<td>0.3</td>
<td>0.3 – 0.3</td>
<td>No</td>
<td>Jan 2017</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Combined Uranium</td>
<td>30</td>
<td>0</td>
<td>ppb</td>
<td>3.6</td>
<td>3.6 – 3.6</td>
<td>No</td>
<td>Jan 2017</td>
<td>Erosion of natural deposits</td>
</tr>
</tbody>
</table>

### TURBIDITY
CONTINUOUSLY MONITORED AT THE TREATMENT PLANT (ENTRY POINT TO THE DISTRIBUTION SYSTEM)

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>TT REQUIREMENT</th>
<th>LEVEL DETECTED</th>
<th>TT VIOLATION</th>
<th>SAMPLE DATES</th>
<th>POSSIBLE SOURCE(S) OF CONTAMINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity</td>
<td>Maximum 1 NTU for any single measurement</td>
<td>Highest single measurement: 0.366 NTU</td>
<td>No</td>
<td>2018</td>
<td>Soil runoff</td>
</tr>
<tr>
<td>Turbidity</td>
<td>In any month, at least 95% of samples must be less than 0.3 NTU</td>
<td>Lowest monthly percentage of samples meeting TT requirement: 99%</td>
<td>No</td>
<td>Sept</td>
<td>Soil runoff</td>
</tr>
</tbody>
</table>

### DISINFECTANTS
CONTINUOUSLY MONITORED AT THE TREATMENT PLANT (ENTRY POINT TO THE DISTRIBUTION SYSTEM)

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>MRDL/TT REQUIREMENT</th>
<th>UNITS</th>
<th>LEVEL DETECTED</th>
<th>MRDL/TT VIOLATION</th>
<th>SAMPLE DATES</th>
<th>POSSIBLE SOURCE(S) OF CONTAMINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine</td>
<td>TT = no more than 4 hours with a sample below 0.2 ppm</td>
<td>ppm</td>
<td>0 samples above or below the level</td>
<td>No</td>
<td>Jan – Dec 2018</td>
<td>Water additive used to control microbes</td>
</tr>
</tbody>
</table>
TOTAL ORGANIC CARBON (DISINFECTION BY-PRODUCTS PRECURSOR) REMOVAL RATIO AND FINISHED WATER
MONITORED AT THE TREATMENT PLANT (ENTRY POINT TO THE DISTRIBUTION SYSTEM)

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>MCL</th>
<th>MCLG</th>
<th>UNITS</th>
<th>AVERAGE</th>
<th>RANGE LOW-HIGH</th>
<th>MCL VIOLATION</th>
<th>SAMPLE DATES</th>
<th>POSSIBLE SOURCE(S) OF CONTAMINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Organic Carbon (TOC)</td>
<td>TT</td>
<td>N/A</td>
<td>N/A</td>
<td>1.26</td>
<td>1 – 2.09</td>
<td>No</td>
<td>Monthly – Running Annual Average</td>
<td>Naturally present in the environment</td>
</tr>
</tbody>
</table>

DISINFECTION BY-PRODUCTS
MONITORED IN THE DISTRIBUTION SYSTEM

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>MCL</th>
<th>MCLG</th>
<th>UNITS</th>
<th>AVERAGE</th>
<th>RANGE LOW-HIGH</th>
<th>MCL VIOLATION</th>
<th>HIGHEST COMPLIANCE VALUE</th>
<th>SAMPLE DATES</th>
<th>POSSIBLE SOURCE(S) OF CONTAMINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Haloacetic Acids (HAA5)</td>
<td>60</td>
<td>N/A</td>
<td>ppb</td>
<td>33.42</td>
<td>10.2 – 55.0</td>
<td>No</td>
<td>53.6</td>
<td>Jan, Apr, Jul, Oct 2018</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Total Trihalomethanes (TTHM)</td>
<td>80</td>
<td>N/A</td>
<td>ppb</td>
<td>42.56</td>
<td>20.3 – 66.5</td>
<td>No</td>
<td>55.5</td>
<td>Jan, Apr, Jul, Oct 2018</td>
<td>By-product of drinking water disinfection</td>
</tr>
</tbody>
</table>

LONG TERM 2 ENHANCED SURFACE WATER TREATMENT RULE MONITORING
MONITORED RAW SOURCE WATER BEFORE IT ENTERS THE TREATMENT PLANT

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>UNITS</th>
<th>RANGE DETECTED</th>
<th>MCL</th>
<th>SAMPLE DATES</th>
<th>POSSIBLE SOURCE(S) OF CONTAMINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptosporidium</td>
<td>oocysts</td>
<td>0</td>
<td>0</td>
<td>Jan – Apr 2018</td>
<td>Naturally occur in the environment</td>
</tr>
<tr>
<td>E. coli</td>
<td>MPN</td>
<td>0 – 2</td>
<td>N/A</td>
<td>Jan – Apr 2018</td>
<td>Naturally occur in the environment</td>
</tr>
</tbody>
</table>
### Disinfectants in the Distribution System

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>MRDL/TT</th>
<th>Lowest TT Percentage</th>
<th>Number of Samples Below 0.2</th>
<th>Units</th>
<th>TT Violation</th>
<th>Sample Dates</th>
<th>Possible Source(s) of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine</td>
<td>MRDL = 4 ppm TT = at least 95% of samples per month must be at least 0.2 ppm</td>
<td>99.11% Aug</td>
<td>2</td>
<td>ppm</td>
<td>No</td>
<td>2018</td>
<td>Drinking water disinfectant used to control microbes</td>
</tr>
</tbody>
</table>

### Lead and Copper

**Monitored in the Distribution System**

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>AL at the 90th Percentile</th>
<th>MCLG</th>
<th>Units</th>
<th>90th Percentile</th>
<th>Sample Size</th>
<th>Sample Sites Above AL</th>
<th>AE Exceedance</th>
<th>Sample Dates</th>
<th>Possible Source(s) of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>1.3</td>
<td>1.3</td>
<td>ppm</td>
<td>0.20</td>
<td>102</td>
<td>0</td>
<td>No</td>
<td>Mar – May 2018</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives</td>
</tr>
<tr>
<td>Lead</td>
<td>15</td>
<td>0</td>
<td>ppb</td>
<td>4.4</td>
<td>102</td>
<td>2</td>
<td>No</td>
<td>Mar – May 2018</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits</td>
</tr>
<tr>
<td>Copper</td>
<td>1.3</td>
<td>1.3</td>
<td>ppm</td>
<td>0.13</td>
<td>100</td>
<td>0</td>
<td>No</td>
<td>Sept – Nov 2018</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives</td>
</tr>
<tr>
<td>Lead</td>
<td>15</td>
<td>0</td>
<td>ppb</td>
<td>3.6</td>
<td>100</td>
<td>0</td>
<td>No</td>
<td>Sept – Nov 2018</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits</td>
</tr>
</tbody>
</table>
VIOlATIONS AND FORMAL ACTIONS

Additional Violation Information

1 Colorado Springs Utilities is required to monitor its Ute Pass Water Treatment Plant on a quarterly basis for Total Xylenes and Ethylbenzene. In the 2nd quarter the sample for these parameters was sent to an outside laboratory for analysis, but the wrong parameters were analyzed. A subsequent re-sample was submitted in June, but it failed the external laboratory’s quality control protocol. We were notified of this in July, which precluded an additional sampling since the 2nd quarter had ended. The required sampling and analysis for these parameters was conducted in the 3rd and 4th quarters of 2018.

2 In March 2018, the Fountain Valley Authority (FVA) Water Treatment Plant identified 6 backflow prevention devices within its system that had not met the State’s annual testing requirement in 2017. However, all of the devices were tested in March 2018 and passed the testing. Therefore, FVA is not aware of any uncontrolled cross connections in its system, and FVA provided the State with an updated Backflow Prevention and Cross-Connection Program Plan that includes measures to ensure the devices are tested annually.
## CONTAMINANTS WITH SECONDARY MCL REQUIREMENTS

**MONITORED AT THE TREATMENT PLANT (ENTRY POINT TO THE DISTRIBUTION SYSTEM)**

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>SMCL (ppm)</th>
<th>UNITS</th>
<th>AVERAGE LEVEL DETECTED (RANGE)</th>
<th>SAMPLE DATES</th>
<th>POSSIBLE SOURCE(S) OF CONTAMINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>0.050 – 0.2</td>
<td>ppm</td>
<td>0.037 (0 – 0.068)</td>
<td>Jan – Dec 2018</td>
<td>Erosion of natural deposits; water treatment chemical</td>
</tr>
<tr>
<td>Chloride</td>
<td>250</td>
<td>ppm</td>
<td>5.8 (1.4 – 10.8)</td>
<td>Jan – Dec 2018</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Manganese</td>
<td>0.5</td>
<td>ppm</td>
<td>0.0004 (0 – 0.0109)</td>
<td>Jan – Dec 2018</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Iron</td>
<td>0.3</td>
<td>ppm</td>
<td>0.003 (0 – 0.062)</td>
<td>Jan – Dec 2018</td>
<td>Erosion of natural deposits; leaching from plumbing materials</td>
</tr>
<tr>
<td>Zinc</td>
<td>5,000</td>
<td>ppb</td>
<td>0.2 (0 – 2.3)</td>
<td>Jan, Apr 2018</td>
<td>Leaching from plumbing materials</td>
</tr>
</tbody>
</table>

Secondary MCL (SMCL) is not enforceable but intended as guidelines. These contaminants in drinking water may affect the aesthetic qualities.
UNREGULATED CONTAMINANT MONITORING REGULATION (UCMR)

The 1996 amendments to the Safe Drinking Water Act required that EPA establish criteria for a program to monitor unregulated contaminants and to identify no more than 30 unregulated contaminants to be monitored every five years.

Unregulated contaminants are those contaminants that do not have a drinking water standard (maximum contaminant level) established by EPA. The purpose of the UCMR is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

The fourth round of the UCMR required monitoring for 30 contaminants. We were required to monitor for these contaminants starting in January 2018. The results for any contaminants detected to date are listed below.

For further information on UCMR please visit https://www.epa.gov/dwucmr/fourth-unregulated-contaminant-monitoring-rule.

### MONITORED AT THE TREATMENT PLANT (ENTRY POINT TO THE DISTRIBUTION SYSTEM)

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>AVERAGE LEVEL DETECTED (RANGE)</th>
<th>RANGE</th>
<th>UNITS</th>
<th>SAMPLE DATES</th>
<th>POTENTIAL SOURCE(S) OF CONTAMINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manganese</td>
<td>1.2 ND – 11 ppb</td>
<td>Jan, Apr, Jul, Oct 2018</td>
<td>Naturally occurring element; commercially available in combination with other elements and minerals; a by-product of zinc ore processing; used in infrared optics, fiber optic systems electronics and solar applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Butanol</td>
<td>1.07 ND – 13 ppb</td>
<td>Jan, Mar, Apr, Jul, Oct 2018</td>
<td>Used as a solvent, food additive, and in the production of other chemicals</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ND = Non-detect
### MONITORED IN THE DISTRIBUTION SYSTEM

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>AVERAGE LEVEL DETECTED (RANGE)</th>
<th>RANGE</th>
<th>UNITS</th>
<th>SAMPLE DATES</th>
<th>POTENTIAL SOURCE(S) OF CONTAMINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haloacetic Acids 5 (HAA5)</td>
<td>33.9</td>
<td>10.2 – 55.0</td>
<td>ppb</td>
<td>Jan, Apr, Jul, Oct 2018</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Brominated Haloacetic Acids 6 (HAABr6)</td>
<td>3.18</td>
<td>0.79 – 9.10</td>
<td>ppb</td>
<td>Jan, Apr, Jul, Oct 2018</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Haloacetic Acids 9 (HAA9)</td>
<td>36.4</td>
<td>14.5 – 57.0</td>
<td>ppb</td>
<td>Jan, Apr, Jul, Oct 2018</td>
<td>By-product of drinking water disinfection</td>
</tr>
</tbody>
</table>

### MONITORED RAW SOURCE WATER BEFORE IT ENTERS THE TREATMENT PLANT

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>AVERAGE LEVEL DETECTED (RANGE)</th>
<th>RANGE</th>
<th>UNITS</th>
<th>SAMPLE DATES</th>
<th>POTENTIAL SOURCE(S) OF CONTAMINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromide</td>
<td>9.05</td>
<td>0 – 79.4</td>
<td>ppb</td>
<td>Jan, Apr, Jul, Oct 2018</td>
<td>Naturally present in the environment</td>
</tr>
<tr>
<td>Organic Carbon, Total</td>
<td>1.69</td>
<td>1.31 – 2.17</td>
<td>ppm</td>
<td>Jan, Apr, Jul, Oct 2018</td>
<td>Naturally present in the environment</td>
</tr>
</tbody>
</table>
CUSTOMERS HAVE A VOICE IN DECISIONS

We encourage customer participation in decisions affecting our drinking water.

• Utilities Board – our governing body – meets the Wednesday between City Council meetings, 1 p.m. at the Plaza of the Rockies, South Tower, 121 S. Tejon St., fifth floor.

• Call 719-448-4800 or click https://www.csu.org/pages/ub-r.aspx.

GENERAL INFORMATION

• To request a printed copy of this report or for questions, call 719-668-4560.

• For more water quality information or to access past Drinking Water Quality Reports, click https://www.csu.org/pages/water-quality-r.aspx.